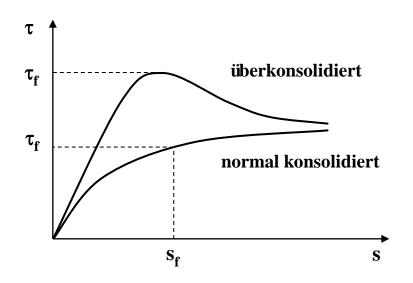

- Einaxialer Druckversuch
- Rahmenscherversuch
- Dreiaxialversuch

Scherfestigkeit

Schubspannung τ und Scherweg s

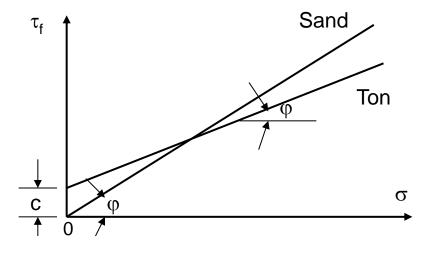
N: Normalkraft


T: Schubkraft

 σ : Normalspannung

τ: Schubspannung

s: Scherweg


Scherfestigkeit

τ_f: Scherfestigkeit

Scherfestigkeit

Festigkeit τ_f in Abhängigkeit von Normalspannung σ

φ: Reibungswinkel

c: Kohäsion

Coulomb'sches Schergesetz

Allgemein: $\tau_f = c + \sigma \cdot \tan \varphi$

Wirksamspannungsprinzip

$$\sigma = \sigma' + u$$

σ: Totale Normalspannung

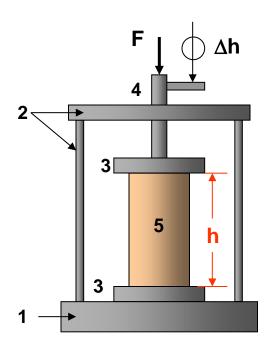
σ': Wirksame Normalspannung

u: Porenwasserüberdruck

Schergesetz in Wirksamspannung

$$\tau_f' = c' + \sigma' \cdot \tan \varphi'$$

τ'_f: Wirksame Scherfestigkeit


c': Wirksame Kohäsion

φ': Wirksamer Reibungswinkel

Einaxialer Druckversuch

Versuchsgerät

(Werkstoffprüfmaschine)

1: Grundplatte 2: Belastungsrahmen

3: Belastungsplatte 4: Belastungsstange

5: Probe mit Anfangsquerschnittfläche A_a

F: Prüfkraft h: Probenhöhe

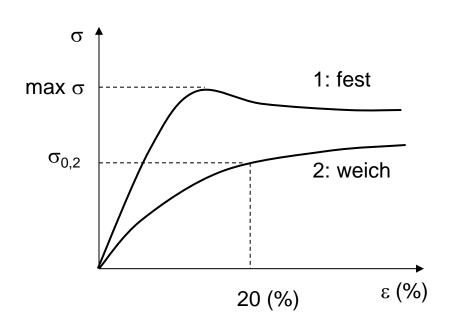
Δh: Vertikalverschiebung

Versuchsdurchführung

- Zylindrische Probe mit Querschnittfläche A_a und Probenhöhe h einbauen
- Die Probe durch vertikale Verschiebung belasten

Einaxialer Druckversuch

Auswertung


Vertikalstauchung ε:

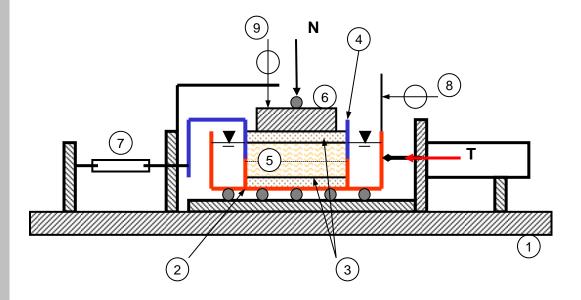
$$\varepsilon = \Delta h / h$$

Einaxiale Druckspannung σ:

$$\sigma = F/A$$

$$mit A = A_a / (1 - \varepsilon)$$

Einaxiale Druckfestigkeit q_u:


$$q_u = max \sigma$$

oder

$$q_u = \sigma_{0,2}$$

Rahmenscherversuch

Versuchsgerät (Rahmenschergerät)

1: Arbeitsplatte

2: Unterteil der Scherzelle

3: Filtersteine

4: Oberteil der Scherzelle

5: Probe

6: Belastungsplatte

7: Kraftaufnehmer

8: Wegaufnehmer (horizontal)

9: Wegaufnehmer (vertikal)

N: Normalkraft

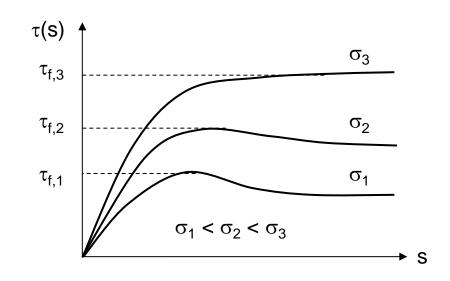
T: Schubkraft

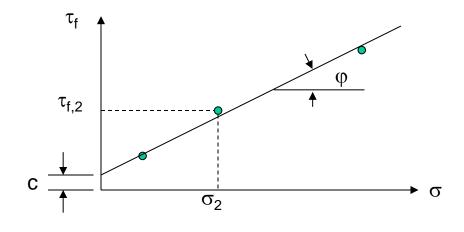
Versuchsdurchführung

- Probe mit Querschnittfläche A₀ einbauen
- Probe unter Normalkraft N konsolidieren
- Die Probe durch langsame Verschiebung der unteren Scherzelle abgeschert
- Der Scherweg s durch Wegaufnehmer 8 und die Schubkraft T(s) durch Kraftaufnehmer 7 gemessen
- Mindestens 3 Proben unter unterschiedlichen N abgeschert werden

Rahmenscherversuch

Auswertung


Normalspannung σ_i :


$$\sigma_i = \sigma'_i = N_i / A_0$$

$$i = 1, 2, 3$$

Schubspannung $\tau_i(s)$:

$$\tau_i(s) := \mathsf{T}(s) \, / \, \mathsf{A}_0$$

Dreiaxialversuch

Dreiaxialgerät (Druckzelle)

1: Fußplatte

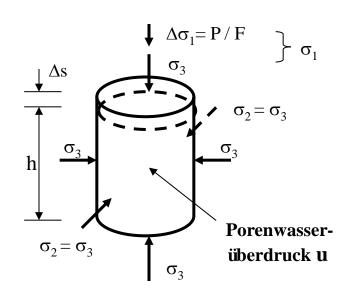
2: Zylinder (mit Wasser gefüllt)

3: Gummihülle

4: Probe (mit Querschnittfläche F)

5: Filterplatte

6: Druckstempel


7: Wasserdruck σ_3

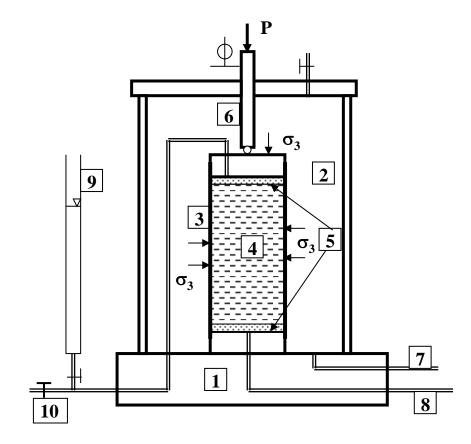
8: Porenwasserüberdruck u

9: Volumenmessung

10: Entwässerung

Spannungszustand und Verschiebung

$$\sigma'_3 = \sigma_3 - u, \qquad \sigma'_1 = \sigma_1 - u$$


Vertikale Dehnung $\varepsilon_1 = \Delta s / h$

Dreiaxialversuch (drei Versuchsarten)

1. Entwässerter Versuch (D-Versuch)

Versuchsdurchführung:

- Gesättigte Probe einbauen
- Probe unter σ₃ konsolidieren lassen
- Die Probe langsam durch vertikale
 Verschiebung abscheren (entwässert
 u = 0, σ'₃ = σ₃, σ'₁ = σ₁)
- Vertikale Verschiebung ∆s und vertikale Kraft P (in Abhängigkeit von ∆s) gemessen
- Drei Proben unter unterschiedlichem σ₃
 konsolidiert und abgeschert

1: Fußplatte

3: Gummihülle

5: Filterplatte

7: Wasserdruck σ₃

9: Volumenmessung

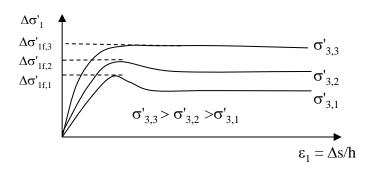
2: Zylinder (mit Wasser gefüllt)

4: Probe (mit Querschnittfläche F)

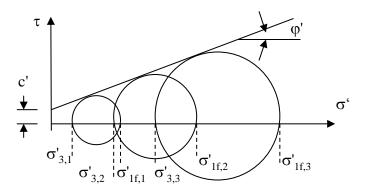
6: Druckstempel

8: Porenwasserüberdruck u

10: Entwässerung


Dreiaxialversuch (drei Versuchsarten)

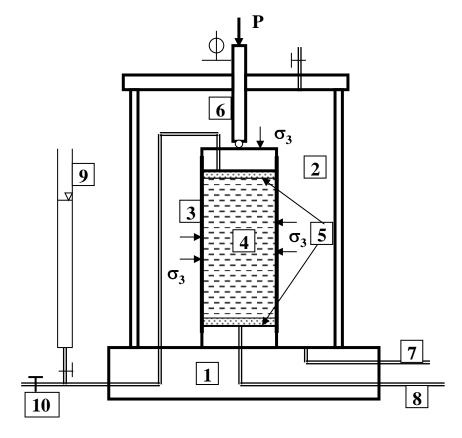
1. Entwässerter Versuch (D-Versuch)


Auswertung:

- Vertikale Dehnung: $\varepsilon_1 = \Delta s/h$
- Druckdifferenz: $\Delta \sigma'_1(\epsilon_1) = P(\Delta s)/F$
- Beziehung zwischen $\Delta \sigma'_1$ und ϵ_1 für unterschiedliches $\sigma'_3 = \sigma_3$ zeichnen
- Druckdifferenz Δσ[']_{1f} beim Bruchszustand bestimmen
- Die wirksamen Spannungen $\sigma_3' = \sigma_3$ und $\sigma_{1f}' = \sigma_3' + \Delta \sigma_{1f}' \text{ für drei Proben}$ berechnen
- Mohrsche Kreise für drei Proben zeichnen
- φ' und c' bestimmen

Druckdifferenz $\Delta\sigma'_1$ in Abhängigkeit von vertikaler Dehnung ϵ_1

Bestimmung von φ' und c'



Dreiaxialversuch (drei Versuchsarten)

2. Konsolidierter, nicht entwässerter Versuch (CU-Versuch)

Versuchsdurchführung:

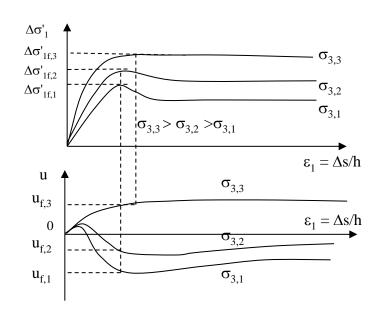
- Gesättigte Probe einbauen
- Probe unter σ_3 konsolidieren lassen
- Die Probe durch vertikale Verschiebung abscheren (nicht entwässert, u ≠ 0,
 σ'₃ = σ₃ u, σ'₁ = σ₁ -u)
- Vertikale Verschiebung Δs, vertikale
 Kraft P und Porenwasserüberdruck u
 (in Abhängigkeit von Δs) gemessen
- Drei Proben unter unterschiedlichem σ_3 konsolidiert und abgeschert

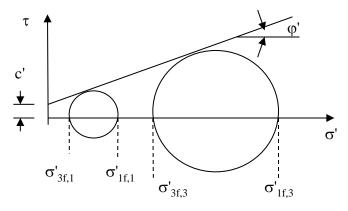
- 1: Fußplatte
- 3: Gummihülle
- 5: Filterplatte
- 7: Wasserdruck σ₃
- 9: Volumenmessung

- 2: Zylinder (mit Wasser gefüllt)
- 4: Probe (mit Querschnittfläche F)
- 6: Druckstempel
- 8: Porenwasserüberdruck u
- 10: Entwässerung

Dreiaxialversuch (drei Versuchsarten)

2. Konsolidierter, nicht entwässerter Versuch (CU-Versuch)

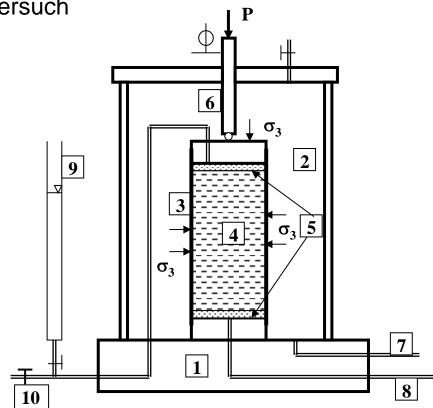

Auswertung:


- Vertikale Dehnung: $\varepsilon_1 = \Delta s/h$
- Vertikale Spannung $\sigma_1(\varepsilon_1) = \sigma_3 + P(\Delta s)/F$
- Druckdifferenz: $\Delta \sigma'_1(\varepsilon_1) = \sigma_1(\varepsilon_1) \sigma_3 = P(\Delta s)/F$
- Beziehung zwischen $\Delta \sigma'_1$ und ϵ_1 zeichnen
- Druckdifferenz Δσ[']_{1f} beim Bruchszustand bestimmen
- Beziehung zwischen u und ε₁ zeichnen
- u_f beim Bruchzustand bestimmen
- Die wirksamen Spannungen $\sigma'_{3f} = \sigma_3 u_f$ und $\sigma'_{1f} = \sigma'_{3f} + \Delta \sigma'_{1}$ für drei Proben berechnen
- Mohrsche Kreise für drei Proben zeichnen
- φ' und c' bestimmen

Bestimmung von φ' und $c' \rightarrow$

CU-Versuch ist schneller als D-Versuch Proben 1 und 2 sind überkonsolidiert

Druckdifferenz $\Delta\sigma'_1$ und Porenwasserüberdruck u in Abhängigkeit von vertikaler Dehnung ϵ_1



Dreiaxialversuch (drei Versuchsarten)

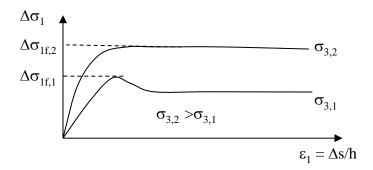
3. Nichtkonsolidierter, nicht entwässerter Versuch (UU-Versuch)

Versuchsdurchführung:

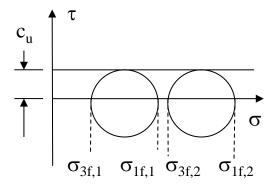
- Gesättigte vorkonsolidierte Probe einbauen
- Seitendruck σ₃ erhöht (Entwässerung geschlossen, Porenwasserüberdruck Δu₁ > 0)
- Probe durch vertikale Verschiebung schnell abscheren (Entwässerung geschlossen, Porenwasserüberdruck Δu₂ > 0)
- Vertikale Verschiebung ∆s und vertikale
 Kraft P (in Abhängigkeit von ∆s) gemessen
- Eine Probe oder zwei Proben unter unterschiedlichem σ₃ abgeschert

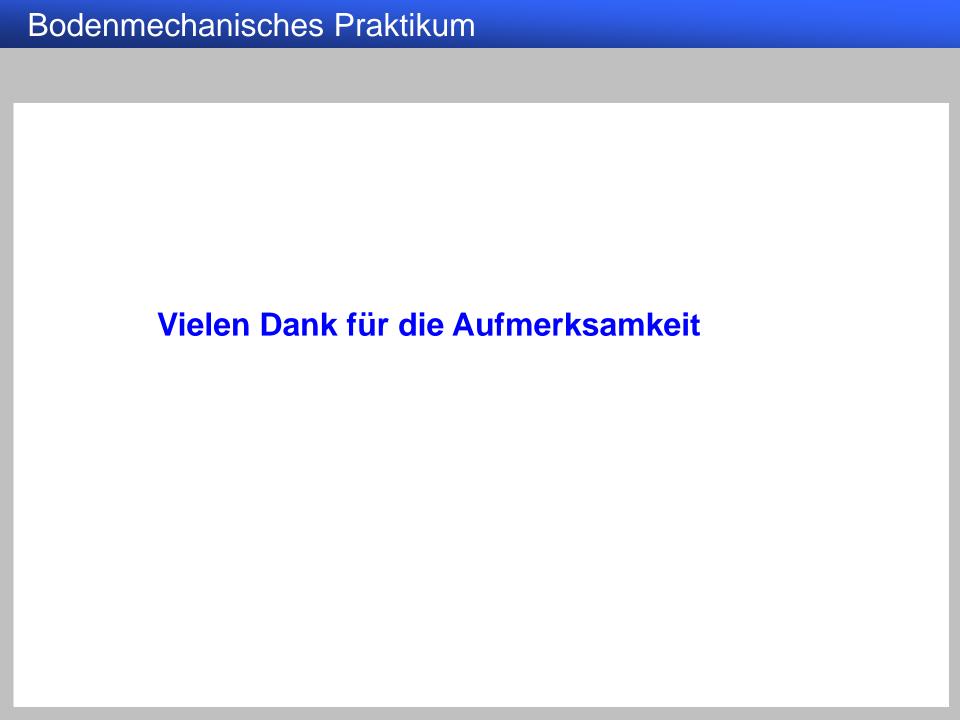
- 1: Fußplatte
- 3: Gummihülle
- 5: Filterplatte
- 7: Wasserdruck σ₃
- 9: Volumenmessung

- 2: Zylinder (mit Wasser gefüllt)
- 4: Probe (mit Querschnittfläche F)
- 6: Druckstempel
- 8: Porenwasserüberdruck u
- 10: Entwässerung


Dreiaxialversuch (drei Versuchsarten)

3. Nichtkonsolidierter, nicht entwässerter Versuch (UU-Versuch)


Auswertung:


- Vertikale Dehnung: $\varepsilon_1 = \Delta s/h$
- Vertikale Spannung $\sigma_1(\epsilon_1) = \sigma_3 + P(\Delta s)/F$
- Druckdifferenz: $\Delta \sigma_1(\varepsilon_1) = \sigma_1(\varepsilon_1) \sigma_3 = P(\Delta s)/F$
- Beziehung zwischen $\Delta \sigma_1$ und ϵ_1 zeichnen
- Druckdifferenz $\Delta \sigma_{1f}$ beim Bruchszustand bestimmen
- Vertikale Spannung $\sigma_{1f} = \sigma_3 + \Delta \sigma_{1f}$ und $\sigma_{3f} = \sigma_3$ berechnen
- Mohrscher Kreis zeichnen
- c_u bestimmen

Druckdifferenz $\Delta\sigma_1$ in Abhängigkeit von vertikaler Dehnung ϵ_1

Bestimmung von c_u

